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Introduction

Hydrodynamic loads testing was completed on a segmented, high-speed sealift (HSS)
trimaran model, number 5594, having a scaled ratio 1:45. The model was comprised of six shell
sections connected using a calibrated backspline with instrumentation to measure primary and
secondary hull girder loading. Table 1 contains both model and full-scale dimensional data.
This test was an evaluation by the Navy of a notional structural design for a lightweight high-
speed hull form in support of the High Speed Sealift Program. Irregular wave experiments have
been completed to evaluate primary and secondary structural loads and seakeeping performance.
This report documents the secondary structural loads data analysis for the irregular wave test
series. Model testing was performed at the NSWC Harold Saunders Maneuvering and
Seakeeping (MASK) facility in June 2002 and ended with irregular wave testing in July 2002 on
Carriage 2 of the David Taylor Model Basin. Maximum wave impact pressures from eight hull
girder shell locations ranged from 13 psi to 64 psi. The foredeck green sea loading events ranged
from 42 to 195 psi in Sea State 5 at 45 knots. The utility of these results will be realized through
comparisons and validations of analytically based secondary load computations.

Testing

The model tests and measurements were performed co-operatively between the Structures
and Composites Division, Code 65 and the Seakeeping Division, Code 55. This report deals
exclusively with the measurement and analysis of secondary wave impact loads. Results of the
primary loads analysis can be found in Reference 1. Test data were obtained from Model 5594,
a 1:45 scale five-segment hydrodynamic loads model. Test conditions were based on irregular
wave conditions simulating random ocean seaways. Various conditions are required to obtain
both primary and secondary loads data. The primary mission requirement placed on the HSS is
to operate at 55 knots in 4-meter wave heights. This is a subset of the model test matrix which
included other conditions necessary to define response in high sea states at low speeds, see Table
2. The test matrix represents the summary of all sea state, speed and heading combinations
achieved from tests run in the MASK or on Carriage 2. Sea state is defined by the NATO based
Northern Atlantic wave height parameters listed in Table 3. The extreme test conditions were
chosen to maximize global loads and the likelihood of secondary loading on the bow and the
outrigger cross structure.
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Secondary Loads

Wave impact or secondary loads data were measured using pressure panels and pressure
transducers. Pressure loads often govern the design of local structure at the bow, outrigger cross-
structure, and transom. Pressure panels are calibrated with uniform static loads providing the
means to convert measured dynamic responses to equivalent uniform static pressures acting on
the entire surface of the panel. This calibration provides responses in a format beneficial to the
designers who require static patch loads for sizing scantlings. Wave impact measurements
require high sample rates and a specialized data collection system.

Pressure Panels

Pressure panels are fabricated from structurally scaled rigid polyvinyl chloride (PVC).
They are installed in the shell of the model in areas expected to incur significant numbers of
wave impacts. PVC panels are designed to have Froude-scaled, water-backed responses to an
impact loading. PVC panels have the scaled stiffness properties of a plate panel bounded by
stiffeners representing typical architecture. PVC panels are calibrated to provide a convenient
uniform pressure measurement over a scaleable area. The rectangular area of each panel used for
the HSS model measures one by two inches and scales to 45 by 90 inches for an area of 28
square feet. The panels shown in Figure 1 are instrumented with strain gages wired into a bridge
configuration which produces an output voltage proportional to differential bending across the
short axis of the panel; see Figure 2. Results of a typical pressure panel calibration are shown in
Figure 3. Calibration is performed by placing a small box over the face of the pressure panel to
achieve an airtight seal so that the volume inside the enclosed box can be pressurized, repeatedly,
between zero and three pounds per square inch (psi). For more dynamic loading, the pressure
panel is checked against the response of the pressure transducer (or pressure gauge) used in the
calibration process, see Figure 4. Wave impact pressure scales as the model scale factor of 45.
This places the maximum calibrated pressure at 135 psi. Details of panel design and Froude-
scaling of wave impact pressures may be found in References 2 and 3.

PVC panels were installed on the port and starboard side shell centered at the intersection
of Station 2 and the 4-meter waterline; see Figure 5. Other areas of the bow side shell were not
instrumented because it was anticipated that the wave-piercing bow form would efficiently cut
through waves reducing the incidence of large wave impacts. Three pressure panels, port and
starboard, were also measured in the tunnel between the center hull and outriggers in the plane of
the wet deck; see Figure 6 and Figure 7. Pressure loads on the transom were not measured
because it was anticipated that the design of the transom would be driven by local loads
associated with the water jets. A total of eight panels were installed in the model; see Table 4 for
details.

Pressure Gauge

Large pressure transducers with a 0.75 inch diameter pressure sensitive surface (scales to
6.2 ft*) were used for secondary loads measurements on the foredeck, see Figure 8. The
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transducer location used in the initial MASK tests were changed and optimized before the
Carriage 2 tests. The new foredeck arrangements resulted from observations which revealed a
shielding effect for surfaces forward of Station 2 caused by the wave piercing bow geometry.
Water that would normally hit the foredeck tended to arc over the pressure transducer at Station
2. Areas of the foredeck between Stations 3 and 4 would see most of the heavy green sea
loading. For the Carriage 2 tests, gages were relocated to cover the Station 3 and 4 areas. The
analysis of foredeck transducer data was limited to the Carriage 2 test series. An example of a
single Foredeck green sea loading event for all three transducer measurements is provided in
Figure 9.

MASK testing results did not reveal significant wave impact events for the small pressure
transducers located on the vertical leading edge of the cross structure. As a result, no analysis or
results are presented for the port and starboard fascia pressure transducers.

The small pressure transducer at the Station 2 keel location did not measure significant
bottom slamming events. This phenomena is explained by the high dead rise angle of the Station
2 cross section combined with a sharp keel allowing for smooth re-entry, see Figure 5.

Data Acquisition System

Three data sets were used to cover the variety of structural response sensors in the model.
Global response channels from the instrumented beam of the center hull and PVC load cells were
recorded to data files labeled slow. Analysis of slow data can be found in Reference 1. Local
slam loads from pressure panels were recorded to data files labeled medium. Local wave impact
or green sea loadings on the foredeck were recorded to data files labeled fast.

This report summarizes the results of analyzed medium and fast data files. The three data
sets were collected from independent signal conditioning boxes using a single computer with
three analog-to-digital (A-D) boards, storing the data in separate files. Medium speed wave
impact data were collected from pressure panel instrumentation listed in Table 4. Pressure
panels were digitized at 5,000 samples per second for 8 channels with a 12-bit A-D converter.
Pressure transducer instrumentation listed in Table 5 was digitized at 20,000 samples per second
for four channels with a 12-bit A-D converter.

The collection software starts each A-D board at virtually the same time so that time
correlation between files is possible. To save weight in the model, all structural response sensors
were completed and energized in the model using small 8-channel completion boxes. This
arrangement reduced the number of wires emanating from the model to five flexible small multi-
conductor cables. The completion boxes ran off a 24-Vdc power supply and were capable of
supplying 10 Vdc and 3.33 Vdc excitation to the structural response sensors (strain gage
bridges).
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Weibull Analysis

Based on previous analyses and the findings in References 4 through 8, wave impact
responses collected during the model test were assumed to fit a Weibull distribution. Once
Weibull probability distribution parameters are determined, extrapolations can determine lifetime
maximum values, provided a sufficient number of amplitudes are recorded for a given sea state,
speed and relative heading. The general three-parameter Weibull cumulative distribution
function may be expressed as follows:

X%, Jﬂ
6—x

P(x) =1—e_[ .

Equation 1
where,
¥ represents the data (¥ > z,),
P(y) represents the cumulative probability at x,
2o is the positive threshold value below which there are no measurable impact data,
B is Weibull shape parameter or slope, and
7 is the characteristic value of impact pressure, corresponding to the value with a

cumulative probability of 0.632.

Depending on the Weibull shape parameter, /3, the distribution can be Exponential (4=
1.0), Rayleigh (4= 2.0), or approximate a normal distribution (5= 3.44), with many other
distributions possible. The characteristic value, 6, occurs at the same cumulative probability
(0.632) on every Weibull distribution, independent of slope. Estimates of the Weibull
parameters may be obtained in a variety of ways; two in use currently are the linear regression
and moment analysis methods.

Order Statistics / Linear Regression Method

The shape parameter, £, or slope can be determined from a linear regression of the best-fit
line made through the data on a Weibull plot. This is accomplished by rearranging the
distribution function in Equation 1 and taking the natural logarithm of both sides twice, resulting
in the following equation.

lnln[1 — Il’(x)J = Bln(x —xo)—ﬂln(a -x,) Equation 2
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When plotted in log space, Equation 2 has the form of a straight line, ¥ = BX+4. By

choosing In(x-x() as X, the scale on the abscissa, and Inln as Y, the scale on the ordinate,

1-P(x)
the cumulative Weibull distribution can be represented as a straight line. The Weibull shape
parameter, /3, then becomes the slope, B, of the straight-line. Both the slope and intercept, 4, are
determined from the method of least squares. The characteristic value is then related to the
coefficients of the straight-line fit in the equation below.

)

In@-x,) = —(%J Conversely, 0- Xo) =L Equation 3

Typically, the method of least squares is performed on an ordered set of impact data sorted
from smallest to largest with a cumulative probability assigned to each X-value using the
following equation.

m
Plx)= Equation 4
n+l1
where,
m is an ordered ranking term equal to 1,2,...n with,
n is the total number of wave impact data points.

Performing a Weibull analysis in this fashion is easy to implement within a spreadsheet.
The threshold value, xy, can be chosen through an iterative process so that the correlation
coefficient of the linear regression analysis is maximized. Using this method, the threshold
value, xp, must be less than the smallest measured pressure. It is important to note that the
estimates of the characteristic value do have the threshold value subtracted, and for this reason
the characteristic value in Equation 3 is expressed as, - xo. Typical results of the Weibull
analysis performed on impact pressures from the model test are shown graphically in Figure 10.

Data Analysis and Results

All of the wave impact data for the MASK test series were fitted to a three-parameter
Weibull distribution with results listed in Table 6 through Table 13. The Carriage 2 Weibull
analysis results are shown in Table 14 through Table 21. These tables include estimated Weibull
parameters for slope or shape (), characteristic value () and threshold (x) for each sensor and
test condition. Since the parameters are estimated in linearized Weibull space, the intercept and
correlation are also provided. The Weibull parameters were also used to calculate a most
probable maximum value (Pp,x) to compare with the maximum measured value. These tables
also list slam rates and population statistics for the wave impact data. Analyzed data with
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correlations less than 0.97 are considered poor fits and the Weibull results should not be used.
Also, results will be suspect for wave impact populations with fewer than 6 data points. Good
and bad statistical results are included in the summary tables to demonstrate that relatively large
populations sometimes have poor fits in Weibull space. The physical cause of a poor fit is seen
for speed, sea state and heading combinations which produce many small local pressures some of
which are near the resolution of the pressure panel measurement. Valid information can be
gained from the data, but the data cannot be represented by the Weibull distribution.
Furthermore, this type of data may not have value in determining design loads which are much
greater in magnitude.

The largest measured wave impacts that occurred for the MASK and Carriage 2 test
conditions are listed in Table 22 and Table 23. The largest wave impact pressures that occurred,
by speed, heading, sea state and by pressure panel location, are summarized in Table 24 for the
MASK tests and Table 25 for Carriage 2 tests. The MASK and Carriage 2 test series were
reported separately to allow for comparison of similar test conditions for determining variability
in test results. This comparison will be helpful when comparing analytical predictions with
model test results.

To better understand the wave impact phenomena and identify trends which might develop
in the data, a series of plots with trends are shown in Figure 11 through Figure 29. These plots
also include discussions to annotate specific details of the trend.

As with pressure panel data, Weibull analyses were also performed on “green sea” loading
data measured using an array of pressure transducers along the foredeck. The foredeck green sea
loading phenomena is most prominent in head sea test conditions. For this reason, the Carriage 2
high-speed head sea tests conditions were used to develop the database for green sea loading.
The Weibull analysis is summarized in Table 26 through Table 28.

During testing, technical problems developed with some of the sensors. As a result some
data are considered bad and are omitted from analysis. Summary tables with blanks indicate a
lack of impact data or a bad sensor. For completeness, summaries were produced listing when a
particular pressure panel was considered dead; see Table 29 and Table 30.

Conclusions

Examination of the trending plots show that pressure generally increases with speed and
sea state for most measurement locations. Additionally, wave impact rates also increase with
speed, see Figure 30. Generally, oblique headings produce the largest wave impacts for the wet
deck, with bow 60-degree relative heading seen most often in the summary tables. The
“Starboard Cross Structure Forward” shows up most often as the location of maximum pressure
based on speed, heading or sea state. The identical location port side also repeats as a location of
maximum pressure. On the model, these pressure panels are located aft of the foam block that
forms the leading edge of the cross structure near the entrance of the enclosed area between the
center hull and outriggers, see Figure 6. This may be the location of the cross structure that
“clips” waves as they pass between the hulls, attenuating any slam events that occur further aft
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on the cross structure. Based on sea state, speed or heading for any particular summary, the
weather side measurements tend to produce slightly more of the maximum slam events than lee
side measurements.

Trending of the Weibull shape parameter shows the most consistent behavior for the
“Starboard Mid Cross Structure” pressure panel; see also Figure 31 through Figure 34 for
individual summaries. In general, wave impact events are assumed to be exponentially
distributed; that is, the Weibull shape parameter is one. Overall, the averaged Weibull analysis
results for the MASK slam events have a shape parameter of 1.3, over a range from 0.4 to a
maximum slightly over 5. For Carriage 2 testing, the average value of the shape parameter is
1.4, over a range from 0.4 to a maximum slightly over 3.6. These values were calculated for
Weibull fits with correlations greater than 0.97 and populations with 6 or more slam events. The
bow pressure panels tended to have the highest slam rates with a relatively high Weibull shape
parameter.

The HSS hull form appears to be a viable design based on comparisons with available wave
impact measurements made with other ships in severe test conditions; however, foredeck green
sea loadings appear to be relatively high. Maximum observed values from eight hull girder
pressure panel locations on the HSS ranged from 13 to 64 psi for all test conditions. Pressure
transducers used to measure green sea loading on the foredeck produced values ranging from 42
psi to a maximum of 195 psi measured in Sea State 5 at 45 knots. Although these measurements
are based on small diaphragm areas, it should be noted that the possibility exists for larger
pressures since some untested condition could produce wave impact pressures greater than those
summarized in this report. Furthermore, increased expose time will also increase the likelihood
of larger events. The Weibull parameters documented in this report can be used to extrapolate
lifetime maximum or extreme values using the expected operational profile for the ship.

For a ship of this large size, there are no direct high-speed comparisons. However, a
generalized comparison between wet deck locations at low speed in high sea states can be made
with that of a small water plane area twin hull (SWATH). The T-AGOS 19 SWATH model tests
and full-scale trials documented maximum measured pressures of 50 and 53 psi, respectively, for
the wet deck. For the HSS wet deck, a maximum low speed pressure of 57 psi was recorded for
the wet deck in Hurricane Camille. The wet deck clearance of the T-AGOS 19 and the HSS
model are both approximately 13 feet.

In Table 31 general characteristics are provided for other hull forms previously tested as
models. The largest foredeck green sea loading event for each model type is listed by speed in
Table 32. The maximum 55 knot test speed for the HSS model was more than twice the previous
maximum speed of the listed model tests. This stark difference clearly shows the limit of what is
known for secondary loading at high speed for large vessels. It appears that the wave piercing
bow geometry does not limit green sea loading (shipping of water over the bow) allowing for
increasing loads with increasing speed. The bulwarks of bow flare geometries appear to be
beneficial, effectively reducing green sea loading as speed increases. It is not clear if bow flare
would be beneficial at 45 knots as no high-speed data exist for bow flare geometries. All of the
reported maximum measured values could easily be exceeded through extended exposure time or
by some unknown combination of sea state, speed and heading. Critical to a design which
incorporates a wave piercing geometry will be to use a bulwark, breakwater or shroud to
eliminate large green sea loading events at high speeds under moderate sea conditions.
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To make estimates of maximum lifetime wave impact pressures, the lifetime (years of
service) and operational profile must be developed for the HSS hull form. The results show that
high speed and moderate sea state combine to produce the largest wave impact pressures. Since
the ship will spend most of its operational life at high speed in low to moderate seas, the
measured maximum wet deck pressure panel value of 64 psi and foredeck pressure gauge
maximum of 195 psi are likely to occur and possibly be exceeded over the life of the ship.
Estimates of maximum lifetime wave impact pressure are useful and can be scaled to fit geosims
of different displacements, providing useful comparisons with future analytically based
secondary load predictions.

- Four Strain Gages Measure
Differentail Bending Across Panel

Figure 1. Instrumented Pressure Panel
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PRESSLRE PANEL

Figure 2. Pressure Panel Strain Gage Layout
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HSS Model Foredeck Green Sea Loading Event
Hurricane Camille 15 Knots Head Seas
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Trends for HSS model test (Pressure Panel Data)

In general, in any given sea state or at any heading, pressure increases with increasing
speed (as seen in Figure 11). As sea state increases, pressure increases at any speed or heading

(as seen in Figure 12).

Notes for Figure 11 through Figure 34:

1. The head sea test condition is defined as zero degrees.

2. Speed is in knots.

3. Heading is in degrees.
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Port Bow Sta 2 4m AWL

By Heading: At headings HO, PrtBow330, and SB60 as speed increases, pressure increases
in all sea states. At heading SB75, pressure decreases or remains constant in sea state HC

(Figure 13).
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Figure 13. Pressure vs. Speed at Heading SB75 for Pressure Panel
port_Bow_Sta_2 4m_AWL

By Sea State: At sea states 5, 6, and HC, pressure peaks at 15° and 60° relative headings.
At sea state 7, pressure decreases as relative heading angle increases, with a trough at 90° (Figure
14). Please note that the head sea test condition is defined as zero degrees.
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Figure 14. Pressure vs. Heading at Sea State 7 for Pressure Panel
Port_Bow_Sta_2 4m_AWL
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Port Cross Structure Fwd

By Heading: At heading PrtBow330, pressure increases as speed increases in all sea states
(Figure 152). At headings HO, SB60 and SB75 as speed increases, pressure increases in all sea
states except HC, where pressure decreases or remains constant (Figure 15b).
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Figure 15. Pressure vs. Speed for Pressure Panel Port_Cross_Structure Fwd

By Sea State: At sea state 7, pressure peaks at 30° and 60° relative headings (Figure 16a).
At sea state HC, pressure peaks at 75° at 0 knots and 45° at 15 knots (Figure 16b). There was not
enough data for sea state 5 and the data at sea state 6 was inconsistent for drawing conclusions.
Please note that the head sea test condition is defined as zero degrees.
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Figure 16. Pressure vs. heading for Pressure Panel Port_Cross_Structure Fwd
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Port Facia PP

By Heading: At headings HO and SB60, pressure decreases as speed increases in sea states
7 and HC. At heading SB60, pressure increases as speed increases in sea state 6 (Figure 17There
was not enough data for headings PrtBow330 and SB75.
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Figure 17. Pressure vs. Speed for Port and Starboard Facia_PP at Heading SB60

By Sea State: At sea state 7, pressure peaks at 60° and 90° relative headings (Figure 18a).
Pressure at sea state 6 also peaks at 60°. At sea state HC, pressure peaks at 75° (Figure 18b).
There was not enough data for sea state 5. Please note that the head sea test condition is defined
as zero degrees.
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Figure 18. Pressure vs. Heading for Pressure Panel
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Port Mid Cross Structure

By Heading: At headings HO and SB60, pressure increases as speed increases in all sea
states (Figure 19). There was not enough data for headings PrtBow330 and SB75.

;‘ Pressure vs. Speed at SB60 for i
| Port_Mid_Cross_Structure_Fwd |
|

Speed (knots)
FigTure 19. Pressure vs. Speed for Pressure Panel
Port_Mid_Cross_Structure_Fwd at Heading SB60

By Sea State: No relevant data for plots.
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Stbd Bow Sta 2 4m AWL

By Heading: At headings HO, PrtBow330, SB60 and SB7S5, as speed increases, pressure
increases in all sea states (Figure 20).

Presssure vs. Speed at SB60 for |
| Stbd_Bow_Sta_2_4m_AWL
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Figure 20. Pressure vs. Speed for Pressure Panel
Stbd_Bow_Sta_2_4m_AWL at Heading SB60

By Sea State: At sea states 5 and 6, pressure peaks at 60°. At sea state 7, pressure
decreases as relative heading angle increases at speeds below 35 knots and up to a heading of
90°. Above a heading of 90° pressure starts to rise again. At speeds of 35 knots pressure
increases with increasing heading angle (Figure 21a). At sea state HC, pressure peaks at 60° at a
speed of 15 knots. At 0 knots, pressure decreases as relative heading angle increases (Figure
21b). Please note that the head sea test condition is defined as zero degrees.
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Figure 21. Pressure vs. Heading for Pressure Panel Stbd_Bow_Sta_2 4m_AWL
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Stbd Cross Structure Fwd

By Heading: At headings HO, SB60, and SB75, pressure increases as speed increases in all
sea states, except HC in heading HO, where pressure remains constant or increases gradually
(Figure 22). There was not enough data for heading PrtBow330.
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Figure 22. Pressure vs. speed for pressure panel
Stbd_Cross_Structure_Fwd at heading HO

By Sea State: At sea states 5 and 6, pressure peaks at 60° relative headings. At sea state 7
pressure peaks at 60° and 75° relative headings (Figure 23a). At sea state HC, pressure peaks at
45° and 75° (Figure 23b). Please note that the head sea test condition is defined as zero degrees.
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Figure 23. Pressure vs. heading for pressure panel Stbd_Cross_Structure Fwd
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Stbd Facia PP

By Heading: At heading SB60, pressure increases as speed increases in all sea states
(Figure 24). There was not enough data for HO, PrtBow330, and SB75.
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Figure 24. Pressure vs. Speed for Pressure Panel
Stbd_Facia_PP at Heading SB60

By Sea State: At sea state 6, pressure peaks at 60°. At sea state 7, pressure peaks at 60°
and 90° (Figure 25a). At sea state HC, pressure peaks at 45° and 75° at a speed of 15 knots. It
seems that there is a peak at 60° at a speed of 0 knots, but there is no data before 60° (Figure
25b). There was not enough data for sea state 5. Please note that the head sea test condition is

defined as zero degrees.
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Figure 25. Pressure vs. Heading for Pressure Panel Stbd_Facia_PP
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Stbd Mid Cross Structure

By Heading: At heading HO, pressure increases as speed increases in sea states 5 and HC
but decreases in sea state 7 (Figure 26a). At heading PrtBow330, pressure increases as speed
increases in sea state HC. At heading SB60, pressure increases as speed increases in all sea
states but HC, in which it decreases (Figure 26b). At heading SB75, pressure increases as speed
increases in sea state 7, but decreases in sea state HC.
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Figure 26. Pressure vs. Speed for Pressure Panel Stbd_Mid_Cross_Structure

By Sea State: At sea states 5 and 6, pressure peaks at 60°. At sea state 7, pressure peaks at
45° and 75°at speeds of 15 knots and above. At a speed of 0 knots, there is a peak at 45° and 90°
(Figure 27a). At sea state HC, pressure peaks at 30° and 75° (Figure 27b). Please note that the
head sea test condition is defined as zero degrees.
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Figure 27. Pressure vs. Heading for Pressure Panel Stbd_Mid_Cross_Structure
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It is also noted that port pressures are greater at a port heading. The same holds true for
starboard pressures at a starboard heading. One inconsistency found in starboard pressures is

that Facia PP and Mid Cross Structure panel readings are not always higher than port pressures
(Figure 28).
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Figure 28. Pressure vs. speed at sea state 6 and heading SB60

At zero heading, port pressures are generally greater than starboard pressures. However in
sea state 7, port and starboard pressures cross in the Cross Structure Fwd panel readings (Figure
29a), and in sea state HC, starboard pressures are greater than port pressures in Mid Cross
Structure panel readings (Figure 29b).
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Figure 29. Pressure vs. Speed at Heading HO
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Wave Impact Rate vs Speed All Headings Sea State Seven Port Side
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Figure 30. Effect of Speed on Hull Girder Pressure Panel Measurements
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Shape Parameter vs Relative Heading
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Figure 31. Trend of Weibull Shape Parameter Bow Sta 2 4m AWL

* Please note that the head sea test condition is defined as zero degrees.
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Figure 32. Trend of Weibull Shape Parameter Facia Cross Structure
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Shape Parameter

Shape Parameter vs Relative Heading
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